Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We report the results from a study of two massive (M500c> 6.0 × 1014M⊙) strong-lensing clusters selected from the South Pole Telescope cluster survey for their large Einstein radius (RE> 40″), SPT-CL J2325−4111 and SPT-CL J0049−2440. Ground-based and shallow Hubble Space Telescope (HST) imaging indicated extensive strong-lensing evidence in these fields, with giant arcs spanning 18″ and 31″, respectively, motivating further space-based imaging follow-up. Here, we present multiband HST imaging and ground-based Magellan spectroscopy of the fields, from which we compile detailed strong-lensing models. The lens models of SPT-CL J2325−4111 and SPT-CL J0049−2440 were optimized using nine and eight secure multiply imaged systems with a final image-plane rms of 0 63 and 0 73, respectively. From the lensing analysis, we measure a projected mass density within 500 kpc ofM(<500 kpc) = (7.30 ± 0.07) × 1014M⊙and M⊙for these two clusters, and subhalo mass ratios of 0.12 ± 0.01 and , respectively. Both clusters produce a large area with high magnification (μ≥ 3) for a source atz= 9, arcmin2and arcmin2, respectively, placing them in the top tier of strong-lensing clusters. We conclude that these clusters are spectacular sightlines for further observations that will reduce the systematic uncertainties due to cosmic variance. This paper provides the community with two additional well-calibrated cosmic telescopes, as strong as the Frontier Fields and suitable for studies of the highly magnified background Universe.more » « lessFree, publicly-accessible full text available February 3, 2026
-
Abstract We present the second data release of the Massive and Distant Clusters of WISE Survey 2 (MaDCoWS2). We expand from the equatorial first data release to most of the Dark Energy Camera Legacy Survey area, covering a total area of 6498 deg2. The catalog consists of 133,036 signal-to-noise ratio (S/N) ≥ 5 galaxy cluster candidates at 0.1 ≤z≤ 2, including 6790 candidates atz> 1.5. We train a convolutional neural network (CNN) to identify spurious detections and include CNN-based cluster probabilities in the final catalog. We also compare the MaDCoWS2 sample with literature catalogs in the same area. The larger sample provides robust results that are consistent with our first data release. At S/N ≥ 5, we rediscover 59%–91% of clusters in existing catalogs that lie in the unmasked area of MC2. The median positional offsets are under 250 kpc, and the standard deviation of the redshifts is 0.031(1 +z). We fit a redshift-dependent power law to the relation between MaDCoWS2 S/N and observables from existing catalogs. Over the redshift ranges where the surveys overlap with MaDCoWS2, the lowest scatter is found between S/N and observables from optical/infrared surveys. We also assess the performance of our method using a mock light cone measuring purity and completeness as a function of cluster mass. The purity is above 90%, and we estimate the 50% completeness threshold at a virial mass of log(M/M⊙) ≈ 14.3. The completeness estimate is uncertain due to the small number of massive halos in the light cone, but consistent with the recovery fraction found by comparing to other cluster catalogs.more » « less
-
Abstract The Massive and Distant Clusters of WISE Survey 2 (MaDCoWS2) is a new survey designed as the successor of the original MaDCoWS survey. MaDCoWS2 improves upon its predecessor by using deeper optical and infrared data and a more powerful detection algorithm (PZWav). As input to the search, we usegrzphotometry from the DECam Legacy Survey (DECaLS) in combination with W1 and W2 photometry from the CatWISE2020 catalog to derive the photometric redshifts with full redshift probability distribution functions for Wide-field Infrared Survey Explorer (WISE)-selected galaxies. Cluster candidates are then detected using the PZWav algorithm to find three-dimensional galaxy overdensities from the sky positions and photometric redshifts. This paper provides the first MaDCoWS2 data release, covering 1461 (1838 without masking) deg2centered on the Hyper-SuprimeCam Subaru Strategic Program equatorial fields. Within this region, we derive a catalog of 22,970 galaxy cluster candidates detected at a signal-to-noise ratio (S/N) > 5. These clusters span the redshift range 0.1 <z< 2, including 1312 candidates atz> 1.5. We compare MaDCoWS2 to six existing catalogs in the area. We rediscover 60%–92% of the clusters in these surveys at S/N > 5. The medians of the absolute redshift offset are <0.02 relative to these surveys, while the standard deviations are less than 0.06. The median offsets between the detection position from MaDCoWS2 and other surveys are less than 0.25 Mpc. We quantify the relation between S/N and gas mass, total mass, luminosity, and richness from other surveys using a redshift-dependent power law relation. We find that the S/N-richness relation exhibits the lowest scatter.more » « less
-
null (Ed.)ABSTRACT We constrain the evolution of the brightest cluster galaxy plus intracluster light (BCG + ICL) using an ensemble of 42 galaxy groups and clusters that span redshifts of z = 0.05−1.75 and masses of M500,c= 2 × 1013−1015 M⊙. Specifically, we measure the relationship between the BCG + ICL stellar mass M⋆ and M500,c at projected radii 10 < r < 100 kpc for three different epochs. At intermediate redshift ($$\bar{z}=0.40$$), where we have the best data, we find M⋆ ∝ M500,c0.48 ± 0.06. Fixing the exponent of this power law for all redshifts, we constrain the normalization of this relation to be 2.08 ± 0.21 times higher at $$\bar{z}=0.40$$ than at high redshift ($$\bar{z}=1.55$$). We find no change in the relation from intermediate to low redshift ($$\bar{z}=0.10$$). In other words, for fixed M500,c, M⋆ at 10 < r < 100 kpc increases from $$\bar{z}=1.55$$ to $$\bar{z}=0.40$$ and not significantly thereafter. Theoretical models predict that the physical mass growth of the cluster from z = 1.5 to z = 0 within r500,c is 1.4×, excluding evolution due to definition of r500,c. We find that M⋆ within the central 100 kpc increases by ∼3.8× over the same period. Thus, the growth of M⋆ in this central region is more than a factor of 2 greater than the physical mass growth of the cluster as a whole. Furthermore, the concentration of the BCG + ICL stellar mass, defined by the ratio of stellar mass within 10 kpc to the total stellar mass within 100 kpc, decreases with increasing M500,c at all z. We interpret this result as evidence for inside–out growth of the BCG + ICL over the past 10 Gyr, with stellar mass assembly occurring at larger radii at later times.more » « less
An official website of the United States government
